nz.ac.waikato.mcennis.rat.graph.algorithm.prestige
Class PageRankPrestige

java.lang.Object
  extended by nz.ac.waikato.mcennis.rat.graph.model.ModelShell
      extended by nz.ac.waikato.mcennis.rat.graph.algorithm.prestige.PageRankPrestige
All Implemented Interfaces:
java.io.Serializable, Component, Algorithm, Model

public class PageRankPrestige
extends ModelShell
implements Algorithm

Calcuates the PageRank of an actor using the PageRank algorithm as defined in Langeville and Meyer

Langeville, A., and C. Meyer. 2003. "Deeper inside PageRank". Internet Mathematics 1(3):335--80.

See Also:
Serialized Form

Field Summary
 
Fields inherited from class nz.ac.waikato.mcennis.rat.graph.model.ModelShell
listener
 
Constructor Summary
PageRankPrestige()
          Creates a new instance of AddPageRankPrestige
 
Method Summary
 void execute(Graph g)
          Implements the PageRank algorithm in a naive fashion - directly calculating the eigenvector matrix and taking the largest eigenvector (using the Colt scientific computing toolkit.)
 java.util.List<IODescriptor> getInputType()
          The input type describes all the different kinds of graph objects that are utilized (and hence required) by this object.
 java.util.List<IODescriptor> getOutputType()
          The output type describes all the different kinds of graph objects that are created during the execution of this algorithm.
 Properties getParameter()
          List of all parameters this component accepts.
 Parameter getParameter(java.lang.String param)
          Returns the specific parameter identified by its key-name.
 void init(Properties map)
          Parameters for intializing this algorithm 'name' - name of this instance of this algorithm.
 PageRankPrestige prototype()
          All Components implement the prototype pattern.
 
Methods inherited from class nz.ac.waikato.mcennis.rat.graph.model.ModelShell
addListener, fireChange
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface nz.ac.waikato.mcennis.rat.graph.model.Model
addListener
 

Constructor Detail

PageRankPrestige

public PageRankPrestige()
Creates a new instance of AddPageRankPrestige

Method Detail

getInputType

public java.util.List<IODescriptor> getInputType()
Description copied from interface: Component
The input type describes all the different kinds of graph objects that are utilized (and hence required) by this object. This result is only guaranteed to be fixed if structural parameters are not modified. This is an empty array if there is no input.

Specified by:
getInputType in interface Component
Returns:
IODescriptor array for this component
See Also:
IODescriptor

getOutputType

public java.util.List<IODescriptor> getOutputType()
Description copied from interface: Component
The output type describes all the different kinds of graph objects that are created during the execution of this algorithm. The result is only guaranteed to be fixed if structural parameters are not modified. This is an empty array if there is no output.

Specified by:
getOutputType in interface Component
Returns:
IODescriptor array for this component
See Also:
IODescriptor

getParameter

public Properties getParameter()
Description copied from interface: Component
List of all parameters this component accepts. Each parameter also has a distinct key-name used when initializing the object using the init method. If there are no parameters, null is returned.

Specified by:
getParameter in interface Component
Returns:
read-only array of Parameters

getParameter

public Parameter getParameter(java.lang.String param)
Description copied from interface: Component
Returns the specific parameter identified by its key-name. If no parameter is found with this key-name, null is returned.

Specified by:
getParameter in interface Component
Parameters:
param - key-name of the parameter
Returns:
named parameter

execute

public void execute(Graph g)
Implements the PageRank algorithm in a naive fashion - directly calculating the eigenvector matrix and taking the largest eigenvector (using the Colt scientific computing toolkit.)

Specified by:
execute in interface Algorithm
Parameters:
g - graph to be modified

init

public void init(Properties map)
Parameters for intializing this algorithm
  1. 'name' - name of this instance of this algorithm. Default is 'Page Rank Centrality'.
  2. 'relation' - type (relation) of link to use to create a link matrix. Default is 'Knows'.
  3. 'actorSourceType - type (mode) of actor to define Page Rank for. Default is 'User'.
  4. 'propertyName' - name for the property to be created. Deafult is 'Knows PageRank Centrality'.
  5. 'teleportationFactor' - Percent of links for a given node will link to a 'master node' equally connected to every other node. Deafult is '0.15'.


Input 1 - Link
Output 1 - Actor Property

Specified by:
init in interface Component
Parameters:
map - map of the given properties naming parameters and their values in a string

prototype

public PageRankPrestige prototype()
Description copied from interface: Component
All Components implement the prototype pattern. The new parameter has no common resources to the original that are not static resources o the class.

Specified by:
prototype in interface Component
Specified by:
prototype in interface Algorithm
Returns:
default-parameter version of the same class as the original.

Get Relational Analysis Toolkit at SourceForge.net. Fast, secure and Free Open Source software downloads