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Abstract

Graph-RAT is a new programming environment specializing in rela-
tional data mining. It incorporates a number of different techniques into a
single framework for data collection, data cleaning, propositionalization,
and analysis. The language is functional where algorithms are executed
over arbitrary sub-graphs of the data. Analytical results can be conducted
using collaborative filtering or machine learning techniques. The example
algorithms are under BSD license.

1 Introduction

Graph-RAT is a language and framework that draws from the same traditions
as Weka, Matlab, and GATE for providing a high-level interface for performing
a wide range of sophisticated analysis without requiring knowledge of the under-
lying interpretation. However, Graph-RAT differs in that it sees only relational
data. All data has a context—such as the table that it is stored in and its re-
lationships with other tables. All data is placed in a context and all operations
are relative to a context within a graph paradigm. This makes programming in
Graph-RAT considerably different to any other programming environment.

In the traditions of GATE, Graph-RAT provides an end-to-end computing
environment. It includes data collection, data cleaning, data manipulation,
propositionalization, and (by Weka) machine learning primitives. A complete
set of algorithms can be found in the technical report [6] which extends the
algorithm list published the year before [5].

Contrary to other languages, Graph-RAT makes the assumptions of depen-
dency between algorithms and data. All programs in Graph-RAT are explicitly
tied to the specific data structures of the data they utilizes. However, each al-
gorithm component is as general as possible. This creates a functional language
where components are typically simple operations and programs compositions
involving these components.

The structure of Graph-RAT is quite different from other languages and
is discussed in detail in the section 2. The data collection and importing ca-
pabilities are discussed in section 3. Section 4 discusses the similarities and
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differences between Graph-RAT and other languages. Section 5.2 discusses how
to construct applications in Graph-RAT using the command-line interpreter.
Section ?? discusses how to construct and embed Graph-RAT code in a Java
program.

2 Structure

Graph-RAT is unique in the way that it unifies a number of different analysis
techniques and methods into a single high-level analysis language. The basic
structure has been published before in [5] and [6]. It was also demoed at ISMIR
[4]. The technical report in particular contains a complete summary of the
algorithms available, so it will not be repeated here.

The graph consists of three distinct levels of abstraction. The lowest level is
the data structure. The next higher level of abstraction is the graph-view tree.
The final level of abstraction is the algorithm pipe.

2.1 Data Structure

The building blocks of graphs are properties. Each property is a (possibly multi-
valued) variable that contains a Java object. Every property exists within a
context. This context is defined by vertices (actors) and edges (links). Each
vertices has a class (mode) as does each edge (a relation). Graphs themselves
can also have typed properties. Any Java class is an acceptable property type,
provided the appropriate serialization routines are provided. A collection of
actors and links are collected within a graph, indexing them.

Actors are created using an ActorFactory singleton which uses a java.util.Properties
object to specify the parameters to create the Actor. See the Javadoc of Actor-
Factory for a list of all actor types, their properties, and what these properties
influence. Likewise, Links are created from a LinkFactory, and Graphs from a
GraphFactory.

2.2 View Tree

The set of all actors and links form the root view of a graph. All graphs can
have an arbitrary number of child graphs which contain a strict subset of the
root graph’s actors and links. This forms an acyclic hierarchy of subsets of the
original data in the form of a B-Tree. This tree can be queried using a regular
expression for which the set of closest-to-root graphs whose ID matches the
expression is returned.

Subgraphs are either created manually by adding existing actors and links
to a new graph object or by use of the getSubGraph() method of the Graph
interface. Once actors and links are added, the graph can be listed as a child
of a graph by registering it with the addChild() method of the Graph interface.
Similarly, getSubGraph creates a graph which can be added with the addChild()
method.
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2.3 Language Structure

A Graph-RAT program consists of three components: A graph declaration,
a sequence of data acquisition modules, and a sequence of algorithm—view
expression pairs.

The graph declaration that determines which graph implementation will be
used during execution. The parameters are fed to a factory which generates
the base graph of the given type. For SQL-backed graphs, this may load a
pre-existing graph without data acquisition modules.

The next component is a sequence of data acquisition algorithms that add
properties to the graph. Each data acquisition algorithm entry must have a
unique ID and is executed sequentially using the parameters provided.

The third component is a sequence of view expression—algorithm pairs.
For each pair, the expression is used to obtain a sequence of graphs. The
given algorithm is then executed with each graph sequentially using the declared
parameters. Missing parameters are filled with the default value.

2.4 Algorithm Types

Graph-RAT algorithms can be divided into three primary types—propositional
algorithms, clustering algorithms, and analytical algorithms.

The most basic building block algorithms are the propositional algorithms.
These algorithms transform properties into weka Instance objects and move
these properties into different parts of the graph using aggregator functions.
Ultimately, one can propositionalize the entire data set using only these meth-
ods.

Clustering algorithms take a given set and alter the graph view tree based
on the content of the data. The only properties created during this process are
those that declare the graph ID of the new sub-tree an actor or link has been
assigned to.

Analytical algorithms take a set of graph data and construct new actors or
links which are added back to the graph. These algorithms include link-based
analysis such as prestige analysis and actor based analysis such as machine-
learning algorithms.

2.5 Data Source Abstraction

All algorithms and data acquisition modules execute against the Graph inter-
face. Because of this, their can be a number of different implementations of this
interface. Currently, there are 3 major implementations: MemGraph (stored in
memory), Derby SQL, and Postgresql SQL. There are also a number of minor
graph types for specific circumstances such as the actor graph (collects the ID’s
of all actors) and the null graph (never stores anything).
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3 DataCollectionCapabilities

Graph-RAT is designed to make easier the collection and loading of relational
data. There are three different ways to load relational data. One is to construct
a database in the required table structure and register this database with Graph-
RAT. Another is to create an XML file with the correct data. The final is to
use a built-in multi-threaded web-crawling system to acquire the data from the
internet dynamically.

The structure of an SQL database description of Graph-RAT involves the
following tables: Graph, Actor, Link, GraphActor, GraphLink, GraphProperty,
ActorProperty, and LinkProperty. These tables can be created automatically
setting the Initialize parameter true when creating a graph using the Graph-
Factory.

The MemGraph file can be a quite compact way of describing relational
data. By default, the reader assumes that the file is gzipped. Each type of data
that can be stored in a graph is defined within this format. See http://graph-
rat.sf.net for full documentation of the syntax and examples.

The final method involves use of the crawler interface. By default, the inter-
face makes no assumptions about the protocol for accessing data: crawling for
data on a file system uses the same syntax as crawling for data on the Internet.

The built-in web-crawler uses an extensible system for parsing web-pages.
When creating the crawler, a set of parsers are registered. These parsers take
the document and a reference to a graph and perform arbitrary analysis over
the document. Inside the parser, there may be references to “spider” new docu-
ments. This differs from traditional crawlers as parsers can discriminate between
important links and unimportant (i.e. navigation) links. Furthermore, it is pos-
sible to have only a subset of parsers used to analyze a single document when
a crawl request is made to the crawler. Screen scraping web pages and the
relationships between them is made much easier through these features.

The following code demonstrates setting up a crawl of the LastFM web
services:

Crawler crawler = new WebCrawler(); LastFMUserExpansion expansion
= new LastFMUserExpansion(); crawler.setParsers(expansion.seteUpParsers(<file
of usernames>,<graph object>));

currently, due to a bug in the system, each of the first six parsers must
manually setParser the ToFileParser (parser index 7 obtained from the crawler).

4 Language Comparisons

4.1 Graph-RAT vs GATE

There are a number of similarities between these two systems. Both provide a
library of algorithms for building custom applications. However, GATE [2] uses
a very different data structure than Graph-RAT. The GATE structure consists
of a set of tags applied to a document where a tag has a start and a end. These
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tags are equivalent to properties in Graph-RAT, but are treated as an ordered
sequence (by start character). Like Graph-RAT, later algorithms consume tags
from an earlier algorithm.

4.2 Graph-RAT vs Matlab

Similar to Matlab [3], Graph-RAT provides a library of algorithms to execute
against its only data type - the graph. Graph-RAT has sets of properties that
are roughly analogous to Matlab’s matrix variables. Also, the algorithms them-
selves are designed to be extremely high-level, which is also typical of Matlab
algorithms. Unlike Matlab, however, all variables are explicitly tied to a single
data structure—every variable has an explicit context through which it can be
related to other variables.

4.3 Graph-RAT vs Scheme

While Scheme [7] uses a binary tree to store all variables in an application,
Graph-RAT uses a more general cyclic-graph as its most basic unit. Like
Scheme, Graph-RAT has a tree of views roughly analogous to function calls in
Scheme. The propositionalizing algorithms in Graph-RAT function as Scheme’s
cons and car functions. Likewise, the programming style of Graph-RAT is also
primarily functional where the output of one algorithm is fed to others without
any side-effects or other modifications of the graph.

4.4 Graph-RAT vs SQL

All of the operations of the graph interface can be re-written in terms of SQL
statements. Furthermore, the propositional algorithms in Graph-RAT provide
a limited query capability that correspond to a primitive form of SELECT
statement in SQL. However, the propositional algorithms perform avoids ’not
applicable’ nulls and other problems involved in a traditional SELECT state-
ment involving joins. Contrary to SQL, however, these SELECT statements
modify the underlying tables - explicitly placing the results of the algorithms
back into the database. Finally, there are no pure reads in Graph-RAT—every
read implies a corresponding insert statement.

4.5 Graph-RAT vs LINQ

LINQ [1] is a programming environment in C# and is the most similar envi-
ronment to Graph-RAT. While Graph-RAT focuses on model manipulation and
set-based descriptions of the underlying data, LINQ provides a query-based view
of the underlying data, focusing on analyzing combinations of sequences rather
than combinations of sets. However, in LINQ, queries involving multiple queries
still fall back on SQL-style joins to create sequences. Graph-RAT provides no
equivalent query method, but provides a number of additional tools for creating
subsets of the original data and analyzing them.
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4.6 Graph-RAT vs Weka

Like Weka [8], Graph-RAT provides data acquisition from databases, input from
XML, and data cleaning capabilities. Also, Graph-RAT provides a pipeline for
performing experiments in a similar way to Weka. However, while Weka is
designed to work on non-relational data, Graph-RAT is explicitly designed to
work on relational data. As a result, many of the base components of Graph-
RAT have no correlary in Weka. In fact, most of Weka—classification and
clustering in particular—are included in Graph-RAT as individual algorithms
operating on Instance objects on a set of actors.

4.7 Graph-RAT vs Other Graph Libraries

Table 1 presents a brief summary of prominent toolkits. The Hypergraph, Pic-
colo, Giny , Guess, Jung2, Prefuse, and JGraph toolkits are all geared towards
visualization of graphs without any analysis capabilities. Prefuse contains a
matrix-based descriptor that is particularly inefficient with different data-types
over different modes, but does support arbitrary properties for an actor. Jung2
provides a set of analysis tools, but does not have built-in support for actors,
modes, or properties, though its Template-based structure allows these features
to be added later. The biggest drawback is that its general structure does not
allow for propositionalization of relational data. Proximity provides support for
modes and relations, but does not include an algorithm base and has limited
support for paths and properties. Jena provides a sophisticated query language
over multiple modes and relations but does not provide analysis capabilities in
its language. Its focus on RDF, instead of a more compact XML, can also be a
drawback.

Table 1: Existing graph toolkits
Name URL Description
Hypergraph hypergraph.sourceforge.net Hyperbolic tree applet for visualizing graph structure

in an XML file
Piccolo www.cs.umd.edu/hcil/piccolo Toolkit for 2D graphics, especially zooomable interfaces
prefuse www.prefuse.org Toolkit for data visualization including graphs
Giny csbi.sourceforge.net framework for interactive information visualization
Guess www.graphexploration.cond.org analysis and visualization tool for graphs; uses piccolo,

prefuse, and Jung. Includes Jython interpreter
Jung2 jung.sourceforge.net framework for modeling, analyzing and visualizing

graph-based data
JGraph www.jgraph.com/jgraph.html graph visualization component
Proximity kdl.cs.umass.edu/software graph analysis package
Jena jena.sourceforge.net RDF analysis language
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5 Programming in Graph-RAT

While abstract descriptions of Graph-RAT are useful, demonstrating how to
construct applications in Graph-RAT is also quite useful. The construction
consists of three parts: choosing a graph, selecting data acquisition modules,
and selecting algorithm modules.

To start with, one should use a simple graph. If the application’s only
function is web crawling, a UserGraph or other speciality graph is appropriate.
Otherwise, choose the graph which best suites the type of data. If the content
is limited in size, collecting in a MemGraph and saving to file may be the most
appropriate. Otherwise, using one of the SQL-backed graphs would be a good
choice as they are quite scalable.

5.1 Choosing a Data Acquisition Module

Deciding on a data acquisition module determines what analysis can be per-
formed later. In other languages, this part is an offline, hand-done process. In
Graph-RAT, data acquisition

5.1.1 Using ReadLastFMProfile

Unfortunately, acquiring data using the crawler is now disabled due to an up-
grade of the LastFM web services (upgrade of Graph-RAT in progress). How-
ever, it is still possible to read the results of a previous run. (Contact the author
for a copy under a creative commons non-commercial share and share alike li-
cense for a copy of the data.) This creates a graph consisting of Artist, User,
and Tag actor modes. Artists have Tag relations with Tags, Users have Tag
relations with tags, Users have UserArtistTags with Artists, Users have Friends
with other Users, and Users have ListensTo relations with Artists. Artists have
jAudio-derived content vectors as properties. Users have profile information as
properties. This model is used in Section 5.2 as a demonstration of how to
program in Graph-RAT.

5.1.2 Using CrawlLiveJournal

LiveJournal creates, by default, one mode—Users. They have properties from
the FOAF itself and also have Friends relations with each other.

5.1.3 Using MemGraphReader

This reads an arbitrary MemGraph XML file and loads the XML file into mem-
ory. The modes, relations, and properties are entirely dependent on the content
of the file.
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Figure 1: Beginning example data model

5.1.4 Writing a New Data Acquisition Module

Any relational data can be mapped directly into the Graph-RAT data model.
When importing an SQL table, the table types are actor modes. The foreign keys
represent relations between actors. The tuples in a table represent properties.
Each entry in the table represents a single actor instance whose links are defined
by whatever foreign keys are in that entry.

The built-in crawler operates in a breadth-first search. With appropriate
parsers, performing targeted web crawls are easy and efficient. When perform-
ing crawls, one of mode of actors are typically the web site with its contents
described as properties. The links in the page are usually relations to other
pages. Frequently, terms are separated out and treated as actors as well.

5.2 Algorithm Examples

All of the following examples of Graph-RAT algorithm pairs are from the domain
of music recommendation created by the CrawlLastFM data acquisition module.
Figure 1 shows the modes and relations in this system.

The properties are as follows:

Actor Node Property Name Property Type
User (Profile Items) Various Strings and Integers
Artist SongVector double array

In all of these examples, the relation ’ListensTo’ describes the ground truth.
The purpose of each algorithm is to create a new relation ’Derived’ which at-
tempts to recreate the ’ListensTo’ relation as completely as possible. For this
purpose, all algorithms start with the following code:

<Scheduler>
<Graph>
<Name>MemGraph</Name>
</Graph>
<DataAquisition>
<Name>ReadLastFMProfile</Name>
</DataAquisition>
<DataAquisition>
<Name>ReadAudioFiles</Name>
<Properties/>
</DataAquisition>

and ends with:
<Algorithm>

<Pattern>.*</Pattern>
<Class>Kendall Tau</Class>
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<Name>Evaluation</Name> <Property>
<Name>GroundTruth</Name>
<Value>ListensTo</Value>
</Property>
</Properties>
</Algorithm>
</Scheduler>

5.2.1 Local Recommendation

The first application is quite simple—the equivalent of a ’hello world’ Graph-
RAT application. It recommends what each friend listens to. It does this by
aggregating over ListensTo relations, aggregating across Friends relation, then
the LinkToProperty to created the Derived Link.

<Algorithm>
<Name>AggregateByLink</Name>
<Property>
<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>Friend</Value>
</Property>
<Property>
<Name>destination</Name>
<Value>data</Value>
</Property>
<Property>
<Name>aggregator</Name>
<Value>nz....reusablecores.aggregator.Concatenate</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>PropertyToLink</Name>
<Property>
<Name>source</Name>
<Value>data</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>Derived</Value>
</Property>
</Algorithm>

9



5.2.2 Collaborative Filtering

User-to-user collaborative filtering and Item-to-Item collaborative filtering algo-
rithms re-create the majority of the collaborative filtering algorithms commonly
used in both general recommendation algorithms as well as most social-based
commercial recommenders.

The user-to-user algorithm calculates similarity between users then tries to
recreate ListensTo by the same method as local recommendation.

<Algorithm>
<Name>SimilarityByLink</Name>
<Property>
<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>ListensTo</Value>
</Property>
<Property>
<Name>destinationRelation</Name>
<Value>Similarity</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>AggregateByLink</Name>
<Property>
<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>Friend</Value>
</Property>
<Property>
<Name>destination</Name>
<Value>tagVector</Value>
</Property>
<Property>
<Name>aggregator</Name>
<Value>nz....aggregator.Concatenate</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>PropertyToLink</Name>
<Property>
<Name>source</Name>
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<Value>data</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>Derived</Value>
</Property>
</Algorithm>

Item-to-item calculates similarity between artists, then tries to predict Lis-
tensTo for a particular artist by aggregating the total correlations for each other
artist a user listens to.

<Algorithm>
<Name>SimilarityByLink</Name>
<Property>
<Name>actorType</Name>
<Value>Artist</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>ListensTo</Value>
</Property>
<Property>
<Name>destinationRelation</Name>
<Value>Similarity</Value>
</Property>
</Algorithm> <Algorithm>
<Name>AggregateByLink</Name>
<Property>
<Name>actorType</Name>
<Value>Artist</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>Similarity</Value>
</Property>
<Property>
<Name>destination</Name>
<Value>relationships</Value>
</Property>
<Property>
<Name>aggregator</Name>
<Value>nz....aggregator.Concatenate</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>AggregateByLink</Name>
<Property>
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<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>ListensTo</Value>
</Property>
<Property>
<Name>source</Name>
<Value>data</Value>
</Property>
<Property>
<Name>destination</Name>
<Value>data</Value>
</Property>
<Property>
<Name>aggregator</Name>
<Value>nz....reusablecores.aggregator.Concatenate</Value>
</Property>
</Algorithm>
<Name>PropertyToLink</Name>
<Property>
<Name>source</Name>
<Value>data</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>Derived</Value>
</Property>
</Algorithm>

5.2.3 Direct Machine Learning

This algorithm propositionalizes all available data using aggregators, then uses
traditional machine learning algorithms to predict the ListensTo groundtruth.

<Algorithm>
<Name>ReadAudioFiles</Name>
<Property>
<Name>musicMode</Name>
<Value>Artist</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>AggregateByLinkProperty</Name>
<Property>
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<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>listensTo</Value>
</Property>
<Property>
<Name>innerAggregator</Name>
<Value>nz...Average</Value>
</Property>
<Property>
<Name>outerAggregator</Name>
<Value>nz...Average</Value>
</Property>
<Property>
<Name>source</Name>
<Value>songVector</Value>
</Property>
<Property>
<Name>destination</Name>
<Value>songData</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>AggregateByLink</Name>
<Property>
<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>Friend</Value>
</Property>
<Property>
<Name>aggregator</Name>
<Value>nz...Concatenate</Value>
</Property>
<Property>
<Name>destination</Name>
<Value>friendData</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>AggregateOnActor</Name>
<Property>
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<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>innerAggregator</Name>
<Value>nz...FirstItem</Value>
</Property>
<Property>
<Name>outerAggregator</Name>
<Value>nz...Concatenate</Value>
</Property>
<Property>
<Name>actorProperty</Name>
<Value>data</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>WekaClassifierMultiAttribute</Name>
<Property>
<Name>wekaClass</Name>
<Value>Adaboost</Value>
</Property>
<Property>
<Name>linkAbsence</Name>
<Value>false</Value>
</Property>
<Property>
<Name>actorProperty</Name>
<Value>data</Value>
</Property>
</Algorithm>

Each of these algorithms can be subdivided so the predictive strength of
each component of the source data can be determined individually.

5.2.4 Machine Learning with Cultural Data

This algorithm clusters users according to their friends. Every user is then
provided a vector describing the link structure of the cluster that it is in—
providing cultural data for analysis.

Inserted at 5.2.3
<Algorithm>

<Name>WekaClassifierClusterer</Name>
<Property>
<Name>actorProperty</Name>
<Value>friendData</Value>
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</Property>
</Algorithm>
<Algorithm>
<Name>DirectedTriples</Name>
<Property>
<Name>actorType</Name>
<Value>User</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>GraphToActor</Name>
<Property>
<Name>innerAggregator</Name>
<Value>nz...First</Value>
</Property>
<Property>
<Name>outerAggregator</Name>
<Value>nz...First</Value>
</Property>
<Property>
<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>actorProperty</Name>
<Value>Triple</Value>
</Property>
</Algorithm>

5.2.5 Machine Learning with Orthogonalization

The previous algorithms assume that all artists are unrelated to one another—
something that is blatantly not true. This algorithm corrects for this using PCA
to create a vector for each artist which can be used instead of a straight link.

<Algorithm>
<Name>SimilarityByLink</Name>
<Property>
<Name>actorType</Name>
<Value>Artist</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>ListensTo</Value>
</Property>
<Property>
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<Name>destinationRelation</Name>
<Value>Similarity</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>DistanceMatrix</Name>
<Property>
<Name>actorType</Name>
<Value>Artist</Value>
</Property>
<Property>
<Name>actorVectors</Name>
<Value>true</Value>
</Property>
<Property>
<Name>actorProperty</Name>
<Value>artistVector</Value>
</Property>
</Algorithm>
<Algorithm>
<Name>AggregateByLinkProperty</Name>
<Property>
<Name>actorType</Name>
<Value>User</Value>
</Property>
<Property>
<Name>relation</Name>
<Value>listensTo</Value>
</Property>
<Property>
<Name>innerAggregator</Name>
<Value>nz...Average</Value>
</Property>
<Property>
<Name>outerAggregator</Name>
<Value>nz...Average</Value>
</Property>
<Property>
<Name>source</Name>
<Value>artistVector</Value>
</Property>
<Property>
<Name>destination</Name>
<Value>artistData</Value>
</Property>
</Algorithm>
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<Algorithm>
<Name>WekaClassifierMultiAttribute</Name>
<Property>
<Name>wekaClass</Name>
<Value>Adaboost</Value>
</Property>
<Property>
<Name>linkAbsence</Name>
<Value>false</Value>
</Property>
<Property>
<Name>actorProperty</Name>
<Value>artistData</Value>
</Property>
</Algorithm>

These algorithms only scratch the surface but do give an idea of how to write
applications in Graph-RAT.

5.3 Algorithms

The algorithms available are a super-set of the algorithms described in [6]. Be-
yond these are two new aggregators and principal component analysis.

6 Embed

These operations can also be embedded in Java. The scheduler, algorithms, and
graph objects all have factories for creating them. The ’Name’ XML property
is entered as the ’Name’ property on a java.util.Properties object. See each en-
tries javadoc on graph-rat.sourceforge.net for a description of each property
available.

7 Conclusions

Graph-RAT provides a feature-rich programming language for performing rela-
tional data mining. Every aspect of the process from aquisition to data cleaning
to analysis to evaluation is presented within a single framework. A wide variety
of algorithms can be created and evaluated quickly, making it an good proto-
typing environment for quite complicated analysis.

8 Future Work

Additional algorithms for separating testing and training relations are under
way. Furthermore, a number of toolkit upgrades involving dynamic loading of
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components, replacing Properties objects with Graph-RAT Property objects,
and a Graph implementation that also conforms to the Actor interface.
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